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INTRODUCTION

I Novel idea for depth estimation from image-pose sequences
I Existing methods are frame-by-frame, leading to flickery results

I Leverage multi-view information without extra costs

I A pose-kernel prior to encode similarity of the camera poses

I Encourages similar poses to have resembling latent spaces
I Suitable both for batch estimation and online estimation

I Can be combined with a post-processing stage

POSE-KERNEL GAUSSIAN PROCESS PRIOR

I Define a distance measure between two camera poses Pi and Pj

D[Pi,Pj] =

√
‖ti − tj‖2 +

2
3

tr(I− R>i Rj),

where the poses are P = {t,R}, residing in R3 × SO(3)

I Use the Matérn class as covariance function (kernel) structure

κ(P,P ′) = γ2
(

1 +

√
3 D[P,P ′]

`

)
exp

(
−
√

3 D[P,P ′]
`

)

to enable the latent space to behave in a continuous and smooth fashion

I State inference problem as a GP regression model
zj(t) ∼ GP(0, κ(P[t ],P[t ′])),

yj ,i = zj(ti) + εj ,i, εj ,i ∼ N(0, σ2)

assign independent GP priors to zi, and consider the encoder outputs yi to be
noise-corrupted latent code
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(a) Camera pose track and frames

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

(b) Pose-kernel in batch mode
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(c) Pose-kernel in chain mode (online)

Figure 3. (a) A continuous camera trajectory on the left with associated camera frames. In (b)–(c), the a priori pose-kernel covariance
structures are shown as matrices (colormap: 0 γ2). The kernel encodes information about how much similarity (or correlation) we
expect certain views to have in their latent space. See, e.g., the correlation between poses 1–4 and 9. In (b) this correlation is propagated
over the entire track, while in (c) the long-range effects are suppressed. The small coordinate xyz-axes illustrate camera orientations.

puts, when there are more than one neighbour frame, we
compute the cost volume with each neighbour image sep-
arately and then average the cost volumes before passing
them to the encoder–decoder network.

During training, with a sequence of N input frames, we
predict N depth maps by using the previous frame as the
neighbour frame (except for the first frame that use the next
frame as the neighbour frame), and use the mean of the L1
errors (at four scales) of all frames as the overall loss for
training the model.

3.2. Pose-kernel Gaussian process prior

We seek to define a probabilistic prior on the latent space
that would account for a priori knowledge that poses with
close or overlapping field of view should produce more sim-
ilar latent space encodings than poses far away from each
other or poses with the camera pointing in opposite direc-
tions. This knowledge is to be encoded by a covariance
function (kernel), and for this we need to define a distance
measure or metric to define ‘closeness’ in pose-space.

To measure the distance between camera poses, we build
upon the work by Mazzotti et al. [20] which considers
measures of rigid body poses. We extend this work to be
suitable for computer vision applications. Specifically, we
propose the following pose-distance measure between two
camera poses Pi and Pj :

D[Pi, Pj ] =

√
‖ti − tj‖2 +

2

3
tr(I−R⊤

i Rj), (2)

where the poses are defined as P = {t,R} residing in R3×
SO(3), I is an identity matrix, and ‘tr’ denotes the matrix
trace operator.

We define a covariance (kernel) function for the latent
space bottleneck layer in Fig. 2. We design the prior for

the latent space processes such that they are stationary and
both mean square continuous and once differentiable (see
[24], Ch. 4) in pose-distance. This design choice is moti-
vated by the fact that we expect the latent functions to model
more structural than purely visual features, and that the we
want the latent space to behave in a continuous and rela-
tively smooth fashion. Choosing the covariance function
structure from the so-called Matérn class [24] fulfils these
requirements:

κ(P, P ′) = γ2

(
1+

√
3D[P, P ′]

ℓ

)
exp

(
−
√
3D[P, P ′]

ℓ

)
.

(3)
This kernel encodes two arbitrary camera poses P and P ′

to ‘nearness’ or similarity in latent space values subject to
the distance (in the sense of Eq. 2) of the camera poses.
The tunable (learnable) hyperparameters γ2 and ℓ define the
characteristic magnitude and length-scale of the processes.
Fig. 3 shows an example camera pose track and associated
covariance matrix evaluated from Eq. (3) with unit hyper-
parameters.

In order to share the temporal information between
frames in the sequence, we assign independent GP priors
to all values in zi, and consider the encoder outputs yi to be
noise-corrupted versions of the ‘ideal’ latent space encod-
ings (see Fig. 2). This inference problem can be stated as
the following GP regression model:

zj(t) ∼ GP(0, κ(P [t], P [t′])),

yj,i = zj(ti) + εj,i, εj,i ∼ N(0, σ2),
(4)

where zj(t), j = 1, 2, . . . , (512×8×10), are the values of
the latent function z at time t. The noise variance σ2 is a
parameter of the likelihood model, and thus the third and
final free parameter to be learned.

Fig. 1: Illustrative example of our pose-kernel.

BATCH ESTIMATION

I Solve independent GP regression tasks with one matrix inversion

E[Z | {(Pi,yi)}N
i=1]=C (C + σ2 I)−1 Y,

V[Z | {(Pi,yi)}N
i=1]=diag(C− C (C + σ2 I)−1 C)

where Ci ,j = κ(Pi,Pj) and Y = (y1 y2 . . . yN)> are outputs from the encoder

ONLINE ESTIMATION

I Solve GP inference in state-space form

Φi = exp

[(
0 1

−3/`2 −2
√

3/`

)
∆Pi

]
,

where ∆Pi = D[Pi,Pi−1] is the pose-distance
zi | y1:i−1 ∼ N(µ̄i, Σ̄i), µ̄i = Φi µi−1,

Σ̄i = Φi Σi−1 Φ
T
i + Qi,

where Qi = Σ0 −Φi Σ0 Φ
T
i The posterior mean and covariance is then given by:

µi = µ̄i + ki (yT
i − hTµ̄i) and Σi = Σ̄i − ki hTΣ̄i

EXPERIMENTS

I Trained with mixed data set of SUN3D, RGBD, MVS, and Scenes11
I Jointly train the GP hyperparameters with mini-sequences of length three

I Robust to neighbour frame selection

I Better 3D reconstruction results demonstrate temporal consistency
I A real-time iOS app to demonstrate the efficiency

CONCLUSION

I We show that our method enables the model to leverage multi-view information
but keeps the model structure simple and time-efficient

I We show that our pose-kernel can measure the ‘closeness’ between frames and
the GP prior improves the accuracy

I Using a confidence measure to penalize wrong predictions from propagating
further might improve the method

approaches are widely used for fusion and reconstruction
[22, 23]. Again, our method is complementary: it shares
information implicitly in the latent space, and can be com-
bined with a depth map fusion post-processing stage.

Finally, regarding the technical and methodological as-
pects of our work, we combine both deep neural networks
and Gaussian process (GP) models. GPs are a probabilistic
machine learning paradigm for encoding flexible priors over
functions [24]. They have not been much used in this area
of geometric computer vision. Though, GPs have been used
in other latent variable modelling tasks in vision, where un-
certainty quantification [14] plays a crucial role—including
variational autoencoders with GP priors [4, 2] and GP based
latent variable models for multi-view and view-invariant fa-
cial expression recognition [5, 6]. In [2] GPs are applied to
face image modelling, where the GP kernel accounts for the
pose, and in [33] they are used for 3D people tracking. The
motivation for our work is in recent advances in real-time
inference using GPs [26, 30] that make them applicable to
online inference in smartphones.

3. Methods
Our multi-view stereo approach consist of two orthogonal
parts. The first (vertical data flow in Fig. 2) is an CNN-
powered MVS approach where the input frames are warped
into a cost volume and then passed through an encoder–
decoder model to produce the disparity (reciprocal of depth)
map. The second part (horizontal data flow in Fig. 2) is for
coupling each of the independent disparity prediction tasks,
by passing information about the latent space (bottleneck
layer encodings) over the camera trajectory. We will first go
through the setup in the former (Sec. 3.1), and then focus on
the latter (Secs. 3.2–3.4).

3.1. Network architecture

For the encoder and decoder, we build upon the straight-
forward model in [34]. Our framework only includes one
encoder–decoder without change of architecture, so we can
compare the results directly to check the impacts of Gaus-
sian process prior. The output of the encoder–decoder is
the continuous inverse depth (disparity) prediction. For
each image-pose pair, we compute a cost volume of size
D×H×W and concatenate the reference RGB image as
the input for the encoder. In this paper, we use an image
size of 320×256, and D = 64 depth planes uniformly sam-
pled in inverse depth from 0.5 m to 50 m. To compute the
cost volume, we warp the neighbour frame via the fronto-
parallel planes at fixed depths to the reference frame using
the planar homography:

H = K
(
R+ t

(
0 0 1

di

))
K−1, (1)

where K is the known intrinsics matrix and the relative pose
(R, t) is given in terms of a rotation matrix and translation
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Figure 2. Illustrative sketch of our MVS approach. The camera
poses and input frames are illustrated in the top rows. The cur-
rent and previous (or a sequence of previous) frames are used for
composing a cost volume, which is then passed through and en-
coder network. The novelty in our method is in doing Gaussian
process inference on the latent-space encodings such that the GP
prior is defined to be smooth in pose-difference. The GP predic-
tion is finally passed through a decoder network which outputs
disparity maps (bottom). This is the logic of the online variant of
our method (the latent space graph is a directed graph / Markov
chain). The batch variant could be illustrated in similar fashion,
but with links between all latent nodes zi.

vector with respect to the neighbour frame. di denotes the
depth value of the ith virtual plane. The absolute intensity
difference between the warped neighbour frame and the ref-
erence frame is calculated as the cost for each pixel at every
depth plane: V (di) =

∑
R,G,B Ĩdi − Ir, where Ĩdi denotes

the warped image via the depth plane at di and Ir denotes
the reference frame.

In the encoder, there are five convolutional layers (a 7×7
filter for the first layer, a 5×5 filter for the second, and 3×3
filters for others). After encoding, we get a latent-space rep-
resentation y of size 512×8×10, which will be transformed
by the GP model. Then decoder will take the transformed
latent representation z as the input to generate a 1×H×W
prediction. There are four skip connections between the en-
coder and decoder and the inverse depth maps are predicted
at four scales. All convolutional layers are followed by
batch normalization and a ReLU function. The prediction
layers using sigmoid function scaled by two to constrain the
range of the predictions. To support arbitrary length of in-

Fig. 2: Illustrative sketch of our MVS approach.
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Abstract

We propose a novel idea for depth estimation from multi-
view image-pose pairs, where the model has capability to
leverage information from previous latent-space encodings
of the scene. This model uses pairs of images and poses,
which are passed through an encoder–decoder model for
disparity estimation. The novelty lies in soft-constraining
the bottleneck layer by a nonparametric Gaussian process
prior. We propose a pose-kernel structure that encourages
similar poses to have resembling latent spaces. The flexi-
bility of the Gaussian process (GP) prior provides adapt-
ing memory for fusing information from previous views.
We train the encoder–decoder and the GP hyperparameters
jointly end-to-end. In addition to a batch method, we derive
a lightweight estimation scheme that circumvents standard
pitfalls in scaling Gaussian process inference, and demon-
strate how our scheme can run in real-time on smart de-
vices.

1. Introduction
Multi-view stereo (MVS) refers to the problem of recon-
structing 3D scene structure from multiple images with
known camera poses and internal parameters. For example,
estimation of depth maps from multiple video frames cap-
tured by a moving monocular video camera [34] is a variant
of MVS when the motion is known. Other variants of the
problem include depth estimation using conventional two-
view stereo rigs [15] and image-based 3D modelling from
image collections [8, 27]. MVS reconstructions have vari-
ous applications. For instance, image-based 3D models can
be used for measurement and visualization of large envi-
ronments to aid design and planning [1], and depth estima-
tion from stereo rigs or monocular videos benefits percep-
tion and simultaneous localization and mapping (SLAM) in
the context of autonomous machines.

In this paper, we focus on depth map estimation for video
frames captured by a monocular camera, whose motion is
unconstrained but known. In practice, the motion could

(a) Reference frames

(b) Multi-view depth-estimation w/o GP

(c) Multi-view depth-estimation with GP

Figure 1. An example sequence of depth estimation results, where
introducing information sharing in the latent space helps improv-
ing the depth maps by making them more stable and edges sharper.

be estimated using visual-inertial odometry techniques (see,
e.g., [29]), which are capable of providing high-precision
camera poses in real-time with very small drift and are also
commonly available in standard mobile platforms (e.g., AR-
Core on Android and ARKit on iOS).

Depth estimation from multiple video frames under
varying and arbitrary motion is more challenging than depth
estimation using a rigid two-view stereo rig, but there can be
potential benefits in using a moving monocular camera in-
stead of a fixed rig. Firstly, in small mobile devices the base-
line between the two cameras of the rig can not be large and
this limits the range of depth measurements. With a mov-
ing monocular camera the motion usually provides a larger
baseline than the size of the device and thus measurement
accuracy for distant regions can be improved. Secondly,
when the camera is translating and rotating in a given space,
it typically observes the same scene regions from multiple
continuously varying viewpoints, and it would be beneficial

Fig. 3: Introducing information sharing in the latent
space makes results more stable and edges sharper.


