Source code for src.models.tsvgp_sites

"""
Module for the t-SVGP models with individual sites per data point.
"""
from typing import Optional

import numpy as np
import tensorflow as tf
from gpflow import default_jitter, kullback_leiblers
from gpflow.conditionals import conditional
from gpflow.covariances import Kuf, Kuu
from gpflow.models import GPModel
from gpflow.models.training_mixins import InputData, RegressionData
from gpflow.models.util import inducingpoint_wrapper
from gpflow.types import MeanAndVariance

from src.sites import DiagSites
from src.util import posterior_from_dense_site_white, project_diag_sites


[docs]class t_SVGP_sites(GPModel): """ Class for the t-SVGP model with sites """ def __init__( self, data: RegressionData, kernel, likelihood, inducing_variable, *, mean_function=None, num_latent_gps: int = 1, lambda_1=None, lambda_2=None, num_latent: Optional[int] = 1 ): """ - kernel, likelihood, inducing_variables, mean_function are appropriate GPflow objects - num_latent_gps is the number of latent processes to use, defaults to 1 - q_diag is a boolean. If True, the covariance is approximated by a diagonal matrix. - whiten is a boolean. If True, we use the whitened representation of the inducing points. - num_data is the total number of observations, defaults to X.shape[0] (relevant when feeding in external minibatches) """ GPModel.__init__(self, kernel, likelihood, mean_function, num_latent_gps) x_data, y_data = data num_data = x_data.shape[0] self.num_data = num_data self.num_latent = num_latent or y_data.shape[1] self.data = data self.inducing_variable = inducingpoint_wrapper(inducing_variable) self.num_inducing = self.inducing_variable.num_inducing self._init_variational_parameters(self.num_data, lambda_1, lambda_2) self.whiten = False
[docs] def _init_variational_parameters(self, num_inducing, lambda_1, lambda_2): """ Constructs the site parameters λ₁, Λ₂. for site t(u) = exp(uᵀλ₁ - ½ uᵀΛ₂u) Parameters ---------- :param num_inducing: int Number of inducing variables, typically referred to as M. :param lambda_1: np.array or None First order natural parameter of the variational site. :param lambda_2: np.array or None Second order natural parameter of the variational site. """ lambda_1 = np.zeros((num_inducing, self.num_latent_gps)) if lambda_1 is None else lambda_1 if lambda_2 is None: lambda_2 = ( np.ones((num_inducing, self.num_latent_gps)) * 1e-6 if lambda_2 is None else lambda_2 ) else: assert lambda_2.ndim == 2 self.num_latent_gps = lambda_2.shape[-1] self.sites = DiagSites(lambda_1, lambda_2)
@property
[docs] def lambda_1(self): """first natural parameter""" return self.sites.lambda_1
@property
[docs] def lambda_2(self): """second natural parameter""" return self.sites.lambda_2
[docs] def get_mean_chol_cov_inducing_posterior(self): """ Computes the mean and cholesky factor of the posterior on the inducing variables q(u) = 𝓝(u; m, S) S = (K⁻¹ + Λ₂)⁻¹ = (K⁻¹ + L₂L₂ᵀ)⁻¹ = K - KL₂W⁻¹L₂ᵀK , W = (I + L₂ᵀKL₂)⁻¹ m = S λ₁ """ X, _ = self.data K_uu = Kuu( self.inducing_variable, self.kernel, jitter=default_jitter() ) # [P, M, M] or [M, M] K_uf = Kuf(self.inducing_variable, self.kernel, X) # [P, M, M] or [M, M] lambda_1, lambda_2 = project_diag_sites(K_uf, self.lambda_1, self.lambda_2, cholesky=False) return posterior_from_dense_site_white(K_uu, lambda_1, lambda_2)
[docs] def natgrad_step(self, lr=0.1): """Takes natural gradient step in Variational parameters in the local parameters λₜ = rₜ▽[Var_exp] + (1-rₜ)λₜ₋₁ Input: :param: X : N x D :param: Y: N x 1 :param: lr: Scalar Output: Updates the params """ X, Y = self.data mean, var = self.predict_f(X) with tf.GradientTape() as g: g.watch([mean, var]) ve = self.likelihood.variational_expectations(mean, var, Y) grads = g.gradient(ve, [mean, var]) grads = grads[0] - 2.0 * grads[1] * mean, grads[1] # compute update in natural form lambda_2 = -0.5 * self.lambda_2 lambda_1 = self.lambda_1 lambda_1 = (1 - lr) * lambda_1 + lr * grads[0] lambda_2 = (1 - lr) * lambda_2 + lr * grads[1] eps = 1e-8 # crop hack, can't instantiate negative sites nats2 but optim might take you there lambda_2 = tf.minimum(lambda_2, -eps * tf.ones_like(lambda_2)) # To match SVGP you need to eliminate this jitter for minibatching self.lambda_1.assign(lambda_1) self.lambda_2.assign(-2.0 * lambda_2)
[docs] def prior_kl(self) -> tf.Tensor: """Returns the KL divergence KL[q(u)|p(u)]""" q_mu, q_sqrt = self.get_mean_chol_cov_inducing_posterior() return kullback_leiblers.prior_kl( self.inducing_variable, self.kernel, q_mu, q_sqrt, whiten=self.whiten
)
[docs] def maximum_log_likelihood_objective(self) -> tf.Tensor: """The variational lower bound""" return self.elbo()
[docs] def elbo(self) -> tf.Tensor: """ This gives a variational bound (the evidence lower bound or ELBO) on the log marginal likelihood of the model. """ X, Y = self.data kl = self.prior_kl() f_mean, f_var = self.predict_f(X, full_cov=False, full_output_cov=False) var_exp = self.likelihood.variational_expectations(f_mean, f_var, Y) if self.num_data is not None: num_data = tf.cast(self.num_data, kl.dtype) minibatch_size = tf.cast(tf.shape(X)[0], kl.dtype) scale = num_data / minibatch_size else: scale = tf.cast(1.0, kl.dtype) return tf.reduce_sum(var_exp) * scale - kl
def predict_f(self, Xnew: InputData, full_cov=False, full_output_cov=False) -> MeanAndVariance: q_mu, q_sqrt = self.get_mean_chol_cov_inducing_posterior() mu, var = conditional( Xnew, self.inducing_variable, self.kernel, q_mu, q_sqrt=q_sqrt, full_cov=full_cov, white=self.whiten, full_output_cov=full_output_cov, ) return mu + self.mean_function(Xnew), var