src.models.tsvgp¶
Module for the t-SVGP model
Module Contents¶
- class base_SVGP(kernel, likelihood, inducing_variable, *, mean_function=None, num_latent_gps: int = 1, num_data=None)[source]¶
- Bases: - gpflow.models.model.GPModel,- gpflow.models.training_mixins.ExternalDataTrainingLossMixin,- abc.ABC- Modified gpflow.svgp.SVGP class to accommodate for different paramaterization of q(u) - kernel, likelihood, inducing_variables, mean_function are appropriate GPflow objects 
- num_latent_gps is the number of latent processes to use, defaults to 1 
- num_data is the total number of observations, defaults to X.shape[0] (relevant when feeding in external minibatches) 
 - abstract get_mean_chol_cov_inducing_posterior(self)[source]¶
- Returns the mean and cholesky factor of the covariance matrix of q(u) 
 - maximum_log_likelihood_objective(self, data: gpflow.models.model.RegressionData) tf.Tensor[source]¶
- The variational lower bound :param data: input data 
 
- class t_SVGP(kernel, likelihood, inducing_variable, *, mean_function=None, num_latent_gps: int = 1, lambda_1=None, lambda_2_sqrt=None, num_data=None, force=False)[source]¶
- Bases: - base_SVGP- Class for the t-SVGP model - kernel, likelihood, inducing_variables, mean_function are appropriate GPflow objects 
- num_latent_gps is the number of latent processes to use, defaults to 1 
- q_diag is a boolean. If True, the covariance is approximated by a diagonal matrix. 
- whiten is a boolean. If True, we use the whitened representation of the inducing points. 
- num_data is the total number of observations, defaults to X.shape[0] (relevant when feeding in external minibatches) 
 - _init_variational_parameters(self, num_inducing, lambda_1, lambda_2_sqrt, **kwargs)[source]¶
- Constructs the site parameters λ₁, Λ₂. for site t(u) = exp(uᵀλ₁ - ½ uᵀΛ₂u) - Parameters
- num_inducing – int Number of inducing variables, typically referred to as M. 
- lambda_1 – np.array or None First order natural parameter of the variational site. 
- lambda_2_sqrt – np.array or None Second order natural parameter of the variational site. 
 
 
 - get_mean_chol_cov_inducing_posterior(self)[source]¶
- Computes the mean and cholesky factor of the posterior on the inducing variables q(u) = 𝓝(u; m, S) S = (K⁻¹ + Λ₂)⁻¹ = (K⁻¹ + L₂L₂ᵀ)⁻¹ = K - KL₂W⁻¹L₂ᵀK , W = (I + L₂ᵀKL₂)⁻¹ m = S λ₁